Soluciones Hoja 4. Pedro Balodis

Problema 1. Determinar el dominio (conjunto más grande dónde estén definidas), éstas funciones [se trata de escribir su dominio como un intervalo o unión de intervalos]:

a) $f(x) = \sqrt{x^2 - 9}$: Tenemos que $x \in Dom(f) \Leftrightarrow x^2 - 9 \in Dom(\sqrt{\cdot})$, ésto es, $x^2 - 9 \ge 0$. Pero

$$x^2 - 9 \ge 0 \Leftrightarrow x^2 \ge 9 \Leftrightarrow |x| \ge 3 \Leftrightarrow x \in (-\infty, -3] \cup [3, \infty) = Dom(f)$$

b) $g(x)=\frac{x-3}{x^2-4x+3}$: Tenemos que $x\in Dom(g)\Leftrightarrow x^2-4x+3\neq 0$, ésto es, $x\neq 1,$ 3. Por tanto,

$$Dom(g) = \mathbb{R} \setminus \{1, 3\} = (-\infty, 1) \cup (1, 3) \cup (3, \infty)$$

c) $F(x) = \frac{x+5}{\sqrt{x^2-5x+6}}$: Tenemos que $x \in Dom(F) \Leftrightarrow x^2-5x+6 \in Dom(\sqrt{\cdot}) \land x^2-5x+6 \neq 0$, ésto es, $x^2-5x+6>0$. Como $x^2-5x+6=0 \Leftrightarrow x=2,3$ y ése es un polinomio cuadrático con coeficiente principal 1>0,

$$x^2 - 5x + 6 > 0 \Leftrightarrow x < 2 \lor x > 3 \Leftrightarrow x \in (-\infty, 2) \cup (3, \infty) = Dom(F)$$

d) $G(x) = \ln(x^2 - 4)$: Tenemos que $x \in Dom(G) \Leftrightarrow x^2 - 4 \in Dom(\ln(\cdot))$, ésto es, $x^2 - 4 > 0$. Razonando como en los ejemplos anteriores

$$Dom(G) = (-\infty, -2) \cup (2, \infty)$$

Problema 2. (Éste problema lo haré a mano en una hoja aparte)

Problema 3. Determinar recorrido e imagen de las siguientes funciones $f : \mathbb{R} \to \mathbb{R}$, así como si son inyectivas o sobreyectivas:

a) $f(x) = |e^x - 2|$: Es claro que $f(x) \ge 0 \ \forall x$, lo cual proporciona $Im(f) \subset [0, \infty)$. Nos gustaría ver que de hecho, hay igualdad de conjuntos: tomando $x = \log 2$, es inmediato que f(x) = 0 (a), y si $x \to \infty$, podemos escribir

$$f(x) = e^x \underbrace{|1 - 2e^{-x}|}_{\to 1, x \to \infty} \Rightarrow \lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x = \infty$$
 (b)

Asimismo está claro que f(x) es continua en cada uno de los puntos de su dominio (es una composición de funciones continuas) (c). De (a), (b) y (c), usando el Teorema de Valores Intermedios, se sigue que $[0,\infty)\subset Im(f)$, luego $[0,\infty)\subset Im(f)\subset [0,\infty)$, de dónde $Im(f)=[0,\infty)$. Vamos a ver que f(x) no es inyectiva (ciertamente, no es sobreyectiva porque hemos determinado su imagen, que es subconjunto propio de \mathbb{R}). Para ello, observamos que $e^x-2\geq 0 \Leftrightarrow x\geq \log 2$, luego podemos escribir

$$f(x) = \begin{cases} 2 - e^x, & x \le \log 2 \\ x - 2 & x \le \log 2 \end{cases}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

b) $g(x) = x^3 + 1$: Una función del tipo $f(x) = x^n$ con n natural es continua en todo $\mathbb R$ (obvio, pues $f(x) = x \dots x$: n factores, luego es un producto de funciones continuas). En el intervalo $[0,\infty)$ es además creciente estrictamente: Si $0 \le x < y$, podemos escribir

$$y^{n} = [x + (y - x)]^{n} = x^{n} + \sum_{j=1}^{n} \binom{n}{j} \underbrace{x^{j} (y - x)^{n-j}}_{\geq 0 \,\forall j; \, x \geq 0} \geq x^{n} + \underbrace{(y - x)^{n}}_{> 0} > x^{n}$$

Para un exponente n que sea además natural impar, como para $x \leq 0$, x^n es estrictamente creciente (podemos usar que entonces $x^n = -|x|^n$, que lo reduce al caso anterior), tenemos que x^n es estrictamente creciente en $(-\infty,0] \cup [0,\infty) = \mathbb{R}$, lo cual hace que una función así sea inyectiva. Como además $\lim_{x\to-\infty}x^n=-\infty$, $\lim_{x\to\infty}x^n=\infty$ y la función x^n es continua en todo su dominio, del Teorema de Valores Intermedios deducimos que x^n es biyectiva. Añadirle una constante no modifica en absoluto todo ésto, así que $g(x)=x^3+1$ es biyectiva. [Nota: como para n natural impar $f(x)=x^n$ es una biyección de \mathbb{R} , tiene asimismo una inversa globalmente definida $f^{(-1)}(x)=\sqrt[n]{x}$, que coincide con $x^{1/n}$ (inicialmente definida para x>0 en Teoría). Usando ésto, la función $g(x)=x^3+1$ tendría inversa $g^{(-1)}(x)=\sqrt[3]{x-1}$].

c) $h(x) = \log(x^2 + 1)$: Primero observamos que $Dom(h) = \mathbb{R}$, pues $x^2 + 1 \ge 1 \ \forall x$. Tenemos que h(x) es continua en todo \mathbb{R} (es composición de funciones continuas) (a), h(0) = 0 (b) y $\lim_{x \to \pm \infty} h(x) = \infty$ (c). De (a), (b) y (c), usando el Teorema de los Valores Intermedios, se deduce que $Im(h) = [0, \infty)$, luego ciertamente no es suprayectiva; como h(x) es claramente par, tampoco puede ser inyectiva.

Problema 4. Decidir si los siguientes subconjuntos de \mathbb{R}^2 pueden ser la gráfica de alguna función y = f(x):

- a) $A = \{(x,y) \in \mathbb{R}^2 : x^2 = y^2\}$: No, pues si $(x,y) \in A \Leftrightarrow y = \pm x$, y si $x \neq 0$, $p_{\pm} = (x, \pm x) \in A$, y ésos dos puntos son distintos. Observamos sin embargo que A es la unión de las gráficas de las funciones $f_{\pm}(x) = \pm x$.
- **b)** $B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$: **No**, pues si $(x,y) \in B$, y si |x| < 1, $p_{\pm} = (x, \pm y) \in B$, y ésos dos puntos son distintos (pues $|x| < 1 \Rightarrow y^2 = 1 x^2 > 0$, luego $y \neq 0$). De nuevo, B es la unión de las gráficas de dos funciones, a saber, $g_{\pm}(x) = \pm \sqrt{1 x^2}$, $|x| \leq 1$.
- c) $C = \{(x,y) \in \mathbb{R}^2 : y^3 = x\}$: Sí, pues como la función $h(x) = x^3, x \in \mathbb{R}$ tiene la inversa globalmente definida $h^{(-1)}(x) = \sqrt[3]{x}$, dado $x \in \mathbb{R}$, $(x,y) \in C \Leftrightarrow y = h^{(-1)}(x)$, luego C es la gráfica de una función (precisamente la de $h^{(-1)}(x) = \sqrt[3]{x}$).

Problema 5. Decidir si las siguientes funciones son pares o impares (aquí dada una función $f: A \subset \mathbb{R} \to \mathbb{R}$, entendemos que f(x) tiene paridad par [respectivamente, impar], si A es un subconjunto **par**, esto es, dado $x \in A \Leftrightarrow -x \in A$ y para $x \in A$,

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

- c) $h(x) = |x^3| + 5$: $Dom(h) = \mathbb{R}$, que es un dominio par, y que $x \in \mathbb{R}$, h(-x) = h(x), luego g es par. (observamos que $v(x) = |x^3|$ es par, aunque x^3 no lo sea, pues $|(-x)^3| = |-x^3| = |x^3|$).
- d) $u(x) = \sqrt{x^2 4}$: $Dom(u) = \{x \in \mathbb{R} : x^2 4 \ge 0\} = \{x \in \mathbb{R} : |x| \ge 2\} = (-\infty, -2] \cup [2, \infty)$, que es un dominio par, y para $x \in Dom(u)$, $u(-x) = \sqrt{(-x)^2 4} = \sqrt{x^2 4} = u(x)$, luego u es par.

Problema 6. Determinar las composiciones $f \circ g$, $g \circ f$ y sus dominios de definición:

a) $f(x) = \sin x$, $g(x) = 1 - x^2$: Puesto que ambas funciones están definidas en todo \mathbb{R} , sus composiciones también. Tenemos:

$$\begin{cases} (f \circ g)(x) = \operatorname{sen}(1 - x^2) \\ (g \circ f)(x) = 1 - \operatorname{sen}^2 x \end{cases}$$

b) $f(x) = e^{3x}, \ g(x) = \ln x$: Tenemos:

$$\begin{cases} Dom(f) = \mathbb{R}, & Im(f) = (0, \infty) \\ Dom(g) = (0, \infty), & Im(g) = \mathbb{R} \end{cases}$$

luego $Im(g)\subset Dom(f)\Rightarrow Dom(f\circ g)=Dom(g)=(0,\infty),\ Im(f)\subset Dom(g)\Rightarrow Dom(g\circ f)=Dom(f)=\mathbb{R}$

$$\begin{cases} (f \circ g)(x) = \exp(3\ln x) = x^3; \ x \in (0, \infty) \\ (g \circ f)(x) = \ln(e^{3x}) = 3x; \ x \in \mathbb{R} \end{cases}$$

c) $f(x) = x^2$, $g(x) = \sqrt{x}$: Tenemos:

$$\begin{cases} Dom(f) = \mathbb{R}, & Im(f) = [0, \infty) \\ Dom(g) = [0, \infty), & Im(g) = [0, \infty) \end{cases}$$

luego $Im(g)\subset Dom(f)\Rightarrow Dom(f\circ g)=[0,\infty),$ $Im(f)\subset Dom(g)\Rightarrow Dom(g\circ f)=\mathbb{R}$

$$\begin{cases} (f \circ g)(x) = (\sqrt{x})^2 = x; \ x \in [0, \infty) \\ (g \circ f)(x) = \sqrt{x^2} = |x|; \ x \in \mathbb{R} \end{cases}$$

Problema 7. Usando sucesiones, o bien la definición, comprobar formalmente los siguientes límites:

- a) $\lim_{x\to -3} 2x = -6$:
 - Con sucesiones: Si $x_n \to -3$ y f(x) = 2x, $f(x_n) = 2x_n \to 2 \cdot (-3) = -6$ (usando propiedades conocidas de los límites de sucesiones). Como éso vale para cualquier sucesión $(x_n)_{n=1}^{\infty}$ con $x_n \to -3$, existe el límite anterior y es igual a -6.
 - Con la definición: Dado $\epsilon > 0$, $|2x (-6)| < \epsilon \Leftrightarrow 2|x + 3| < \epsilon$, luego

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

• Con la definición: Dado $\epsilon > 0$, queremos ver cómo escoger $\delta > 0$ tal que si $|x-4| < \delta$, $|f(x)-1| < \epsilon$. Para ello, usamos que

$$f(x) - 1 = \frac{x - 5}{\sqrt{x - 4} + 1}$$
; $\sqrt{x - 4} + 1 \ge 1$ si $|x - 5| < 1$

y de ésto se deduce que $|f(x)-1| \leq |x-5|, \, (|x-5|<1), \, \text{luego}$ $|\sqrt{x-5}-1|<\epsilon, \, \text{tomando} \, \delta=\min\{\epsilon,1\}>0$ y deducimos que existe el límite y es 1.

Problema 8. Calcular los siguientes límites directamente (sin usar la Regla de L'Hôpital ni derivación, que se verá más adelante):

- a) $\lim_{x\to -1} \frac{x^2+x+2}{x-1}$: Si $f(x)=\frac{x^2+x+2}{x-1}$, f es continua en x=-1, pues es el cociente de dos polinomios, y el del denominador, x-1 no se anula en x=-1. Por tanto, el límite es f(-1)=-1.
- **b)** $\lim_{x\to 1} \frac{x^2+x-2}{x-1}$: Si $f(x) = \frac{x^2+x-2}{x-1}$, usando que $x^2+x-2 = (x-1)(x+2)$, tenemos que f(x) = x+2, $x \neq 1$. Por tanto, $\lim_{x\to 1} \frac{x^2+x-2}{x-1} = \lim_{x\to 1} (x+2) = 3$.
- c) $\lim_{x\to 4} \frac{\sqrt{x+5}-3}{x-4}$: Si $f(x) = \frac{\sqrt{x+5}-3}{x-4}$, $f(x) = \frac{1}{\sqrt{x+5}+3}$, $x \neq 4$, $y = g(x) = \frac{1}{\sqrt{x+5}+3}$ es continua en x = 4. Por tanto, $\lim_{x\to 1} f(x) = g(4) = 1/6$
- d) $\lim_{x\to 2} \frac{\frac{1}{x} \frac{1}{2}}{x-2}$: Si $f(x) = \frac{\frac{1}{x} \frac{1}{2}}{x-2}$, $f(x) = -\frac{1}{2x}$, $x \neq 4$, y $g(x) = -\frac{1}{2x}$ es continua en x = 2. Por tanto, $\lim_{x\to 1} f(x) = g(2) = -1/4$

Problemas 9 y 10: Estudiar los límites laterales en $x=0,\ x=3$ de las siguientes funciones, y la posible continuidad:

 $\mathbf{a})$

$$f(x) = \begin{cases} x, & x \ge 0\\ -x^2, & x \le 0 \end{cases}$$

Para |x-3| < 1, f(x) = x, que es continua en x = 3, luego

$$\lim_{x \to 3+} f(x) = \lim_{x \to 3-} f(x) = 3$$

Si 0 < x < 1, f(x) = x, y como g(x) = x es continua en x = 0, $\lim_{x \to 0+} f(x) = g(0) = 0$. Si -1 < x < 0, $f(x) = -x^2$, y como $h(x) = -x^2$ es continua en x = 0, $\lim_{x \to 0+} f(x) = h(0) = 0$. En los dos puntos mencionados la función tiona límita y como los límitos coincides con el valor do f en los puntos con

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

Las funciones $h_1(x) = 2e$, $h_2(x) = e^x$ y $h_3(x) = -x + 1$ son continuas en todo \mathbb{R} , y usando en cada caso la apropiada, tenemos:

$$\lim_{x \to 3+} g(x) = \lim_{x \to 3+} h_1(x) = h_1(3) = 2e \quad \lim_{x \to 3-} g(x) = \lim_{x \to 3-} h_2(x) = h_2(3) = e^3; \not \exists \lim_{x \to 3} g(x)$$

$$\lim_{x \to 0+} g(x) = \lim_{x \to 0+} h_2(x) = h_0(0) = 1 \quad \lim_{x \to 0-} g(x) = \lim_{x \to 0-} h_3(x) = h_3(0) = \text{; } \exists \lim_{x \to 3} g(x) = 1$$
 $g \text{ es continua } x = 0 \text{ pero no en } x = 3.$

Problema 11. Estudiar la continuidad (o en su caso, la continuidad lateral) de las siguientes funciones en x = 1:

- a) $f(x) = \frac{\sqrt{x^2-1}+5}{\sqrt{x-1}-2}$: Si x < 1, la función f no está definida, así que sólo tiene sentido ver la continuidad por la derecha. Asimimo, si $1 \le x < 2$, $0 \le \sqrt{x-1} < 1 \Rightarrow \sqrt{x-1}-2 < -1$, de modo f(x) está definida y es continua para $1 \le x < 2$ y claramente, $\lim_{x \to 1+} f(x) = f(1)$, luego f es continua por la derecha en x = 1.
- b) $g(x) = \ln(x-1)$: Como $Dom(g) = (1, \infty), 1 \notin Dom(f)$, luego en propiedad, no tiene sentido preguntarse si f es continua en x = 1. Si nos preguntamos si hay alguna forma de extenderla por continuidad en x = 1, la respuesta es que no, pues $\lim_{x\to 1+} f(x) = -\infty$, que no es un valor real.
- c) $h(x) = \sqrt[3]{x-1}$: Puesto que $h = f \circ g$, con $f(x) = \sqrt[3]{x}$, g(x) = x-1 y éstas funciones son continuas en todo \mathbb{R} , lo mismo ocurre con su composición, y en particular, en x = 1.

Problema 12. Determinar los puntos de continuidad de

$$f(x) = \begin{cases} \sqrt{|x|} \operatorname{sen}(1/x) & , x \neq 0 \\ 0 & , x = 0 \end{cases}$$

Solución: Todos, pues si $x \neq 0$, f es continua en x (1/x) es continua para $x \neq 0$, sen (1/x) es la composición de dos funciones continuas, luego continua, y $\sqrt{|x|}$ es continua, luego su producto con sen (1/x) también). En cambio, si x = 0, hay que ver que $\lim_{x\to 0} f(x) = 0$, pero para $x \neq 0$, podemos hacer la estimación

$$|f(x)| \leq \sqrt{|x|} \Rightarrow -\sqrt{|x|} \leq f(x) \leq \sqrt{|x|} \quad (1)$$

La función $g(x)=\sqrt{|x|}$ es par, y $\lim_{x\to 0+}g(x)=\lim_{x\to 0+}\sqrt{x}=0=g(0)$. Por ser g par, también $\lim_{x\to 0-}g(x)=\lim_{x\to 0+}g(x)$, luego $\exists \lim_{x\to 0}g(x)=0=g(0)$. Entonces, de la acotación (1) se deduce que $\exists \lim_{x\to 0}f(x)=0=f(0)$, luego f es continua en x=0.

Problema 13. Definir f por continuidad, en x = 1, cuando sea posible:

a) $f(r) \equiv \frac{x-1}{1}$: Tenemos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

b)
$$g(x) = \frac{(x-1)^2}{|x-1|}$$
: Tenemos

$$g(x) = |x - 1|, \ x \neq 1$$

luego $\lim_{x\to 1+} g(x) = 0 = \lim_{x\to 1-} g(x)$. Por tanto, $\exists \lim_{x\to 1} g(x) = 0$, y si definimos

$$\overline{g}(x) = \begin{cases} g(x) & , x \neq 1 \\ 0 & , x = 1 \end{cases}$$

 \overline{g} extiende por continuidad a g en x=1

Problema 14. Hallar los puntos de continuidad de $h(x) = \sqrt{-x^2 + 7x - 6}$:

Solución: Puesto que $h = f \circ q$, con $f(x) = \sqrt{x}$, $g(x) = -x^2 + 7x - 6$, que son continuas en sus respectivos dominios, su composición h será continua allá dónde esté definida. Puesto que $Dom(h) = \{x \in \mathbb{R} : g(x) \geq 0\}, y g(x) = 0$ sii $x = 1 \lor x = 6$, y como q es un polinomio cuadrático de coeficiente principal -1 < 0, Dom(h) = [1, 6], y es continua en todos ésos puntos.

Problema 15. Dar un ejemplo de función f con f(x) discontinua $\forall x$ y |f(x)|continua $\forall x$:

Solución: Consideremos la función

$$f(x) = \begin{cases} 1 &, x \in \mathbb{Q} \\ -1 &, x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Tenemos que, dado $x_0 \in \mathbb{R}$, existen sucesiones $(x_n)_{n=1}^{\infty}$ con $x_n \in \mathbb{Q} \ \forall n \ y \ x_n \to x_0$ e $(y_n)_{n=1}^{\infty}$ con $y_n \in \mathbb{R} \setminus \mathbb{Q} \ \forall n \in y_n \to x_0$ (para justificar ésto, podemos tomar primero $x_0 = 0$ y $x_n = 1/n$, $y_n = \sqrt{2}/n$, y para un $x_0 \in \mathbb{R}$ cualquiera, si $x_0 \in \mathbb{Q}$, tomamos $x_n = x_0 + 1/n$, $y_n = x_0 + \sqrt{2}/n$ y si $x_0 \in \mathbb{R} \setminus \mathbb{Q}$, tomamos x_n : sucesión de aproximaciones decimales de x_0 , $y_n = x_0 + 1/n$). En todo caso, aceptando éste hecho, a través de la sucesión x_n , $f(x_n) = 1 \rightarrow 1$, mientras que a través de la sucesión y_n , $f(y_n) = -1 \to -1$, luego $\not\exists \lim_{x \to x_0} f(x)$.

En cambio, $|f(x)| = 1 \ \forall x$, luego por ser constante, es continua en todos sus puntos.

Problema 16. (hecho a mano en hoja aparte).

Problema 17. Probar que cada una de las siguientes funciones tiene un cero en (0,1), usando el Teorema de Bolzano:

- a) $f(x) = -x^4 + 8x 6$: f(0) = -6 < 0 < 1 = f(1). Como f es continua en [0, 1], f se anula en (0,1).
- **b)** $g(x) = e^{3x^2} 1$: g(0) = 0 y $0 \in [0, 1]$.
- c) $h(x) = \frac{x^4 3\sqrt{x} + 1}{x^5 + 6x + 1}$: h(0) = 1 > 0 > -1/7 = h(1). h es continua en [0, 1],

 CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE

LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Problema 19. Probar que si $f:[0,1] \mapsto [0,1]$ es continua, f posee al menos un punto fijo $x_0 \in [0,1]$ (ésto es, $f(x_0) = x_0$):

Prueba: Puesto que $0 \le f(0)$, $f(1) \le 1$, considerando g(x) = f(x) - x, $x \in [0,1]$, $g(0) = f(0) \ge 0 \ge f(1) - 1 = g(1)$, y puesto que g es continua en [0,1] si f lo es, se sigue que $\exists x_0 \in [0,1]$ con $g(x_0) = 0 \Leftrightarrow f(x_0) = x_0$ (observamos que únicamente podemos decir $x_0 \in [0,1]$ y no en (0,1), porque las desigualdades para g en los extremos son no-estrictas).

Problema 20. Probar que al calentar un aro siempre hay dos puntos diametralmente opuestos a la misma temperatura.

Prueba: Fijando un punto p_0 en el aro, cualquier otro punto p determinará un cierto ángulo (en radianes) con el punto p, y considerando que la temperatura T=T(p) depende continuamente del punto p, podemos pensar que tal función T es una función continua $T=T(\alpha), \alpha \in [0,2\pi]$, y de período 2π (el ángulo se mide en radianes). Dos puntos diametralmente opuestos corresponden exactamente con determinar dos ángulos $0 \le \alpha < \beta \le 2\pi$ con $\beta - \alpha = \pi$. Si consideramos $f(\alpha) = T(\alpha) - T(\alpha + \pi)$,

$$f(\alpha + \pi) = T(\alpha + \pi) - \underbrace{T(\alpha + 2\pi)}_{=T(\alpha)} = T(\alpha + \pi) - T(\alpha) = -f(\alpha)$$

Si ahora fijamos $\alpha_0 \in [0, \pi]$, o bien $f(\alpha_0) = 0$, en cuyo caso $T(\alpha_0) = T(\alpha_0 + \pi)$, y ya lo tenemos, o bien $f(\alpha_0) \neq 0$. Como $\alpha_0 \in [0, \pi]$, $\alpha_0 + \pi \in [\pi, 2\pi]$ y f es continua en $[0, 2\pi]$, f se anula en $[\alpha_0, \alpha_0 + \pi]$ (pues $f(\alpha_0)$ y $f(\alpha_0 + \pi)$ son de signos opuestos).

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

7